Main page (Russian)
Search in database (English)
Properties of substance:
silver
Group of substances:
inorganic
Physical appearance:
white cubic metal
Empirical formula (Hill's system for organic substances):
Ag
Structural formula as text:
Ag
Molar/atomic mass: 107.87
Melting point (°C):
960.5
Boiling point (°C):
2167
Solubility (g/100 g of solvent):
gallium
: 204.5 (500°C) [
Ref.
]
mercury
: 0.042 (18°C) [
Ref.
]
mercury
: 0.035 (20°C) [
Ref.
]
mercury
: 0.08 (50°C) [
Ref.
]
mercury
: 0.23 (100°C) [
Ref.
]
mercury
: 0.48 (150°C) [
Ref.
]
mercury
: 0.94 (200°C) [
Ref.
]
silver chloride fused
: 0.0232 (490°C) [
Ref.
]
silver chloride fused
: 0.0452 (700°C) [
Ref.
]
uranium molten
: 0.03 (1135°C) [
Ref.
]
water
: 0.0000035 (20°C) [
Ref.
]
Numerical data:
Thermal conductivity (W/m·K): 458.9
Hardness on the Mohs’ scale: 2.7
Density:
10.5 (20°C, g/cm
3
)
9.4 (960.8°C, d
4
)
Reactions:
[
Ref.1
]
2Ag + 2HCl → 2AgCl + H
2
[
Ref.1
]
6Ag + 6HClO
3
→ 5AgClO
3
+ AgCl + 3H
2
O
[
Ref.1
]
3Ag + 4HNO
3
→ 3AgNO
3
+ NO + 2H
2
O
[
Ref.1
]
Ag + 2HNO
3
→ AgNO
3
+ NO
2
+ H
2
O
[
Ref.1
,
Ref.2
]
Ag + F
2
→ AgF
2
[
Ref.1
,
Ref.2
]
2Ag + S → Ag
2
S
[
Ref.1
]
2Ag + 4HI → 2H[AgI
2
] + H
2
Half-life:
100
47
Ag = 2.01 min (β
+
(100%))
100m
47
Ag = 2.24 min ()
101
47
Ag = 11.1 min (β
+
(100%))
101m
47
Ag = 3.10 s (internal transition (100%))
102
47
Ag = 12.9 min (β
+
(100%))
102m
47
Ag = 7.7 min (β
+
(51%), internal transition (49%))
103
47
Ag = 65.7 min (β
+
(100%))
103m
47
Ag = 5.7 s (internal transition (100%))
104
47
Ag = 69.2 min (β
+
(100%))
104m
47
Ag = 33.5 min (β
+
(about 100%), internal transition)
105
47
Ag = 41.29 d (β
+
(100%))
105m
47
Ag = 7.23 min (internal transition (about 100%), β
+
(0.34%))
106
47
Ag = 23.96 min ()
106m
47
Ag = 8.28 d (β
+
(about 100%), internal transition)
107
47
Ag = stable ( (isotopic abundance 51,839%))
107m
47
Ag = 44.3 s (internal transition (100%))
108
47
Ag = 2.382 min (β
-
(97.15%), β
+
(2.85%))
108m
47
Ag = 438 y (β
+
(91.3%), internal transition (8.7%))
109
47
Ag = stable ( (isotopic abundance 48,161%))
109m
47
Ag = 39.6 s (internal transition (100%))
110
47
Ag = 24.56 s (β
-
(about 100%), electron capture (0.3%))
110m
47
Ag = 660 ns (internal transition (100%))
110n
47
Ag = 249.83 d (β
-
(98.67%), internal transition (1.33%))
111
47
Ag = 7.433 d (β
-
(100%))
111m
47
Ag = 64.8 s (internal transition (99.3%), β
-
(0.7%))
112
47
Ag = 3.130 h (β
-
(100%))
113
47
Ag = 5.37 h (β
-
(100%))
113m
47
Ag = 68.7 s (internal transition (64%), β
-
(36%))
114
47
Ag = 4.6 s (β
-
(100%))
114m
47
Ag = 1.50 ms (internal transition (100%))
115
47
Ag = 20.0 min (β
-
(100%))
115m
47
Ag = 18.0 s (β
-
(79.0%), internal transition (21.0%))
116
47
Ag = 3.83 min (β
-
(100%))
116m
47
Ag = 20 s (β
-
(93.0%), internal transition (7.0%))
116n
47
Ag = 9.3 s (β
-
(92.0%), internal transition (8.0%))
117
47
Ag = 73.6 s (β
-
(100%))
117m
47
Ag = 5.34 s (β
-
(94.0%), internal transition (6.0%))
118
47
Ag = 3.76 s (β
-
(100%))
118m
47
Ag = 0.1 μs (internal transition (100%))
118n
47
Ag = 2.0 s (β
-
(59%), internal transition (41%))
118p
47
Ag = 0.1 μs (internal transition (100%))
119
47
Ag = 6.0 s (β
-
(100%))
119m
47
Ag = 2.1 s (β
-
(100%))
120
47
Ag = 1.52 s (β
-
(100%), β
-
n)
120m
47
Ag = 940 ms ()
120n
47
Ag = 384 ms (internal transition (68%), β
-
(32%))
121
47
Ag = 780 ms (β
-
(100%), β
-
n (0.080%))
122
47
Ag = 529 ms (β
-
(100%), β
-
n (0.186%))
122m
47
Ag = 550 ms (β
-
(100%), β
-
n)
122n
47
Ag = 200 ms (β
-
(100%), β
-
n)
122p
47
Ag = 6.3 μs (internal transition (100%))
123
47
Ag = 300 ms (β
-
(100%), β
-
n (1.0%))
123n
47
Ag = 202 ns (internal transition (100%))
123p
47
Ag = 393 ns (internal transition (100%))
124
47
Ag = 177.9 ms (β
-
(100%), β
-
n (1.3%))
124m
47
Ag = 144 ms (β
-
(100%), β
-
n )
124n
47
Ag = 1.7 μs (internal transition (100%))
125
47
Ag = 159 ms (β
-
(100%), β
-
n)
125n
47
Ag = 80 ns (internal transition (100%))
125p
47
Ag = 491 ns (internal transition (100%))
126
47
Ag = 99.3 ms (β
-
(100%), β
-
n)
126m
47
Ag = 92 ms (β
-
(100%), β
-
n)
126n
47
Ag = 27 μs (internal transition (100%))
127
47
Ag = 89 ms (β
-
(100%), β
-
n)
128
47
Ag = 59 ms (β
-
(100%), β
-
n)
129
47
Ag = 49.9 ms (β
-
(100%), β
-
n)
130
47
Ag = 40.6 ms (β
-
(100%), β
-
n)
131
47
Ag = 35 ms (β
-
(100%), β
-
n)
132
47
Ag = 30 ms (β
-
(100%), β
-
n)
94
47
Ag = 37 ms (β
+
(100%))
94m
47
Ag = 550 ms (β
+
(100%), β
+
p (20%))
94n
47
Ag = 400 ms (β
+
(95.4%), β
+
p (27%), p (4.1%), 2p (0.5%))
95
47
Ag = 1.76 s (β
+
(100%), β
+
p (2.5%))
96
47
Ag = 4.44 s (β
+
(100%), β
+
p (6.9%))
96m
47
Ag = 6.9 s (β
+
(100%), β
+
p (15.1%))
96n
47
Ag = 100 μs (internal transition (100%))
96p
47
Ag = 1.543 μs (internal transition (100%))
96q
47
Ag = 160 ns (internal transition (100%))
97
47
Ag = 25.5 s (β
+
(100%))
98
47
Ag = 47.5 s (β
+
(100%), β
+
p (0.0012%))
98m
47
Ag = 220 ns (internal transition (100%))
99
47
Ag = 2.07 min (β
+
(100%))
99m
47
Ag = 9.5 s (internal transition (100%))
Vapour pressure (Torr):
0.000000001 (527°C)
0.00000001 (573°C)
0.0000001 (625°C)
0.000001 (684°C)
0.00001 (751°C)
0.0001 (828°C)
0.001 (918°C)
0.01 (1028°C)
0.1 (1163°C)
1 (1330°C)
10 (1543°C)
100 (1825°C)
Electrode potential:
Ag
+
+ e
-
→ Ag, E = 0.7996 V (water, 25°C)
Ag
2+
+ e
-
→ Ag
+
, E = 1.98 V (water, 25°C)
Viscosity (mPa·s):
2.98 (1200°C)
Surface tension (mN/m):
1140 (900°C)
Standard molar enthalpy (heat) of formation Δ
f
H
0
(298.15 K, kJ/mol):
0 (s)
Standard molar Gibbs energy of formation Δ
f
G
0
(298.15 K, kJ/mol):
0 (s)
Standard molar entropy S
0
(298.15 K, J/(mol·K)):
42.55 (s)
Molar heat capacity at constant pressure C
p
(298.15 K, J/(mol·K)):
25.4 (s)
Molar enthalpy (heat) of fusion Δ
fus
H (kJ/mol):
11.3
Enthalpy (heat) of vaporization Δ
vap
H (kJ/mol):
251.5
Standard molar enthalpy (heat) of formation Δ
f
H
0
(298.15 K, kJ/mol):
284.9 (g)
Standard molar entropy S
0
(298.15 K, J/(mol·K)):
172.9 (g)
Molar heat capacity at constant pressure C
p
(298.15 K, J/(mol·K)):
20.8 (g)
References:
Гороновский И.Т., Назаренко Ю.П., Некряч Е.Ф. Краткий справочник по химии. - 5 изд. - Киев: Наукова думка, 1987. - pp. 38-39 [Russian]
Гурвич Я.А. Справочник молодого аппаратчика-химика. - М.: Химия, 1991. - pp. 51 [Russian]
Денисов В.М., Истомин С.А., Белоусова Н.В., Денисова Л.Т., Пастухов Э.А. Серебро и его сплавы. - Екатеринбург: УрО РАН, 2011 [Russian]
Некрасов Б.В. Основы общей химии. - Т.2. - М.: Химия, 1973. - pp. 244-245 [Russian]
Неорганические синтезы. - Сб. 1. - М.: ИИЛ, 1951. - pp. 10 [Russian]
Пятницкий И.В., Сухан В.В. Аналитическая химия серебра. - М.: Наука, 1975. - pp. 7-14 [Russian]
Рабинович В.А., Хавин З.Я. Краткий химический справочник. - Л.: Химия, 1977. - pp. 98 [Russian]
Реми Г. Курс неорганической химии. - Т.2. - М., 1966. - pp. 420-425 [Russian]
Свойства элементов. - Ч. 2, под редакцией Самсонова Г.В. - М.: Металлургия, 1976. - pp. 46-49 [Russian]
Свойства элементов. - под общей редакцией Дрица М.Е. - М.: Металлургия, 1985. - pp. 71-79 [Russian]
Славинский М.П. Физико-химические свойства элементов. - М.: ГНТИЛЧЦМ, 1952. - pp. 95-113 [Russian]
Справочник по растворимости. - Т.1, Кн.1. - М.-Л.: ИАН СССР, 1961. - pp. 5, 592-593 [Russian]
Справочник химика. - 2 изд., Т.1. - Л.-М.: Химия, 1966. - pp. 593, 596 [Russian]
Химическая энциклопедия. - Т. 4. - М.: Советская энциклопедия, 1995. - pp. 323-324 [Russian]
What information do you need?
© Collected Ruslan Anatolievich Kiper, burewestnik@mail.ru