Main page (Russian) Search in database (English)

Properties of substance:

fluorine

Group of substances:

inorganic

Physical appearance:

gas

Empirical formula (Hill's system for organic substances):

F2

Structural formula as text:

F2

Molar/atomic mass: 37.997

Melting point (°C):

-219.6

Boiling point (°C):

-188.13

Solubility (g/100 g of solvent):

chlorine liquid: soluble (-80°C) [Ref.]
hydrogen fluoride : 0.0025 (-70°C) [Ref.]
hydrogen fluoride : 0.0014 (-50°C) [Ref.]
hydrogen fluoride : 0.0007 (-30°C) [Ref.]
hydrogen fluoride : 0.0004 (-20°C) [Ref.]
oxygen liquid: miscible (-189°C) [Ref.]
water: reaction [Ref.]

Interatomic distances and bond angles:

Interatomic distances (in pm): 141,77 (F-F)

Numerical data:

Year of discovery: 1887
Ionization Potentials (Electronvolts): 15.7

Density:

1.5 (-273°C, g/cm3)
1.587 (-218°C, g/cm3)
1.516 (-188°C, g/cm3)
0.001693 (0°C, g/cm3)

Reactions:

  1. Yeild 90%. [Ref.1, Ref.2]
    Cl2 + F2 → 2ClF
  2. [Ref.1, Ref.2, Ref.3aster]
    S + 3F2 → SF6
  3. [Ref.1, Ref.2]
    H2 + F2 → 2HF
  4. [Ref.1]
    O2 + F2 → O2F2
  5. [Ref.1, Ref.2]
    I2 + 5F2 → 2IF5
  6. [Ref.1]
    2B + 3F2 → 2BF3
  7. [Ref.1aster]
    C + 2F2 → CF4
  8. [Ref.1aster, Ref.2aster]
    Se + 3F2 → SeF6
  9. [Ref.1aster, Ref.2aster]
    Te + 3F2 → TeF6
  10. [Ref.1]
    Kr + F2 → KrF2
  11. [Ref.1]
    Kr + F2 → KrF2
  12. Yeild 90%. [Ref.1]
    Xe + 2F2 → XeF4
  13. [Ref.1]
    Xe + F2 → XeF2
  14. [Ref.1]
    Xe + 3F2 =XeF6
  15. Yeild 60%. [Ref.1]
    2CO + 3F2 → CF3OOCF3
  16. Yeild 75%. [Ref.1, Ref.2]
    3F2 + Cl2O → ClF3O + ClF3
  17. Yeild 30%. [Ref.1]
    2NaN3 + 2F2 → N2F2 + 2NaF + 2N2
  18. [Ref.1, Ref.2aster]
    2F2 + 2NaOH → 2NaF + OF2 + H2O
  19. [Ref.1]
    2ClO2 + F2 → 2ClO2F
  20. Yeild 95%. [Ref.1aster, Ref.2aster]
    2AgCl + 2F2 → 2AgF2 + Cl2
  21. Yeild 75%. [Ref.1aster]
    HgCl2 + F2 → HgF2 + Cl2
  22. [Ref.1aster]
    2Tl2O3 + 6F2 → 4TlF3 + 3O2
  23. [Ref.1, Ref.2]
    CsF + F2 → Cs[F3]
    CsF + 2F2 → Cs[F5]
  24. [Ref.1]
    2Au + 3F2 → 2AuF3
  25. [Ref.1aster, Ref.2]
    Ag + F2 → AgF2
  26. [Ref.1]
    2K + F2 → 2KF
  27. [Ref.1]
    W + 3F2 → WF6
  28. [Ref.1]
    Ni + F2 → NiF2
  29. [Ref.1, Ref.2, Ref.3aster]
    Cr + 2F2 → CrF4
  30. [Ref.1]
    Be + F2 → BeF2
  31. [Ref.1]
    2Na + F2 → 2NaF
  32. [Ref.1]
    U + 3F2 → UF6
  33. [Ref.1]
    Zr + 2F2 → ZrF4
  34. [Ref.1, Ref.2, Ref.3]
    2Ta + 5F2 → 2TaF5
  35. [Ref.1, Ref.2aster]
    Ir + 3F2 → IrF6
  36. [Ref.1, Ref.2, Ref.3]
    Ti + 2F2 → TiF4
  37. [Ref.1]
    Pd + F2 → PdF2
  38. [Ref.1aster]
    Re + 3F2 → ReF6
  39. [Ref.1, Ref.2aster]
    Mo + 3F2 → MoF6
  40. Yeild 75%. [Ref.1]
    Pt + 3F2 → PtF6
  41. [Ref.1]
    Pt + 3F2 → PtF6
  42. Yeild 70%. [Ref.1]
    NH4F + 3F2 → NF3 + 4HF
  43. Yeild 30%. [Ref.1]
    N2 + 3F2 → 2NF3
  44. Yeild 70%. [Ref.1]
    NH4Cl + 3F2 → NF2Cl + 4HF
  45. Yeild 37%. [Ref.1]
    4NH4Cl + 9F2 → 2NFCl2 + N2 + 16HF
  46. Yeild 100%. [Ref.1]
    SF4 + F2 → SF6
  47. Yeild 95%. [Ref.1aster]
    FC(O)OOC(O)F + 2F2 → FOCF2OOCF2OF
  48. Yeild 93%. [Ref.1aster]
    (CF3)2C(OH)2 + 2F2 → (CF3)2C(OF)2 + 2HF
  49. [Ref.1]
    BiF3 + F2 → BiF5
  50. [Ref.1, Ref.2]
    2NH3 + 3F2 → N2 + 6HF
  51. [Ref.1]
    2NaN3 + 3F2 + Cl2 → 2NF2Cl + 2NaF + 2N2
  52. [Ref.1]
    Na2SO4 + 2F2 → 2NaF + SO2F2 + O2
  53. [Ref.1]
    Cs2SO4 + F2 → CsSO4F + CsF
  54. [Ref.1, Ref.2]
    2H2O + 2F2 → 4HF + O2
  55. [Ref.1]
    Au + 3F2 + O2 → O2AuF6

Half-life:

159F = 0.00041 as (p (100%); mass excess 16780 keV)
169F = 0.011 as (p (100%); mass excess 10680 keV)
179F = 64.49 s (β+ (100%); mass excess 1951,7 keV)
189F = 109.771 min (β+ (100%); mass excess 873,7 keV)
18m9F = 234 ns (mass excess 1995,1 keV)
199F = stable (mass excess -1487,39 keV (isotopic abundance 100%))
209F = 11.163 s (β- (100%); mass excess -17,4 keV)
219F = 4.158 s (β- (100%); mass excess -47,6 keV)
229F = 4.23 s (β- (100%); mass excess 2793 keV)
239F = 2.23 s (β- (100%); mass excess 3330 keV)
249F = 400 ms (β- (100%); mass excess 7560 keV)
259F = 50 ms (β- (100%); mass excess 11270 keV)
269F = 10.2 ms (β- (100%); mass excess 18270 keV)
279F = 4.9 ms (β- (100%); mass excess 24930 keV)
289F = < 40 ns ()
299F = 2.6 ms (β- (100%))
309F = < 260 ns ()

Vapour pressure (Torr):

1 (-221°C)
10 (-213.7°C)
100 (-202.6°C)

Electrode potential:

F2 + 2e- → 2F-, E = 2.71 V (hydrogen fluoride , °C)
F2 + 2e- → 2F-, E = 2.866 V (water, 25°C)
F2 + 2H+ + 2e- → 2HF, E = 3.09 V (water, 25°C)

Permittivity (dielectric constant):

1.567 (-215.6°C)
1.517 (-189.8°C)

Dipole moment (D):

0

Standard molar enthalpy (heat) of formation ΔfH0 (298.15 K, kJ/mol):

0 (g)

Standard molar Gibbs energy of formation ΔfG0 (298.15 K, kJ/mol):

0 (g)

Standard molar entropy S0 (298.15 K, J/(mol·K)):

202.7 (g)

Molar heat capacity at constant pressure Cp (298.15 K, J/(mol·K)):

31.3 (g)

Molar enthalpy (heat) of fusion ΔfusH (kJ/mol):

0.51

Enthalpy (heat) of vaporization ΔvapH (kJ/mol):

6.54

Critical temperature (°C):

-129

Critical pressure (MPa):

5.6

References:

  1. Bretherick's Handbook of Reactive Chemical Hazards. - 6 ed., Vol. 1. - Butterworth-Heinemann, 1999. - pp. 1511-1521
  2. Holleman A.F., Wiberg E., Wiberg N. Lehrbuch der Anorganischen Chemie. - Berlin: Walter de Gruyter, 1995. - pp. 459
  3. Inorganic Syntheses. - Vol. 1. - New York and London, 1939. - pp. 136-147
  4. Simons J.H. Fluorine Chemistry. - Vol. 5. - New York: Academic Press, 1964. - pp. 79-83
  5. Smithsonian physical tables. - 2003. - pp. 291
  6. Беликов В.Г. Учебное пособие по фармацевтической химии. - М.: Медицина, 1979. - pp. 10 [Russian]
  7. Галкин Н.П., Майоров А.А., Верятин У.Д., Судариков Б.Н., Николаев Н.С., Шишков Ю.Д., Крутиков А.Б. Химия и технология фтористых соединений урана. - М.: ГИЛОАНТ, 1961. - pp. 263-294 [Russian]
  8. Гринвуд Н., Эрншо А. Химия элементов. - Т.2. - М.: БИНОМ. Лаборатория знаний, 2008. - pp. 147-148, 169 [Russian]
  9. Гудлицкий М. Химия органических соединений фтора. - М.: ГНТИХЛ, 1961. - pp. 278 [Russian]
  10. Гурвич Я.А. Справочник молодого аппаратчика-химика. - М.: Химия, 1991. - pp. 52 [Russian]
  11. Кнунянц И.Л., Фокин А.В. Покорение непреступного элемента. - М.: ИАН СССР, 1963. - pp. 7-26, 37 [Russian]
  12. Краткая химическая энциклопедия. - Т. 5: Т-Я. - М.: Советская энциклопедия, 1967. - pp. 572-577 [Russian]
  13. Лидин Р.А., Аликберова Л.Ю., Логинова Г.П. Неорганическая химия в вопросах. - М.: Химия, 1991. - pp. 173 [Russian]
  14. Основные свойства неорганических фторидов. Справочник. - Под ред. Галкина Н.П. - М.: Атомиздат, 1976. - pp. 24 [Russian]
  15. Промышленные фторорганические продукты: Справочник. - Л.: Химия, 1990. - pp. 439-446 [Russian]
  16. Рабинович В.А., Хавин З.Я. Краткий химический справочник. - Л.: Химия, 1977. - pp. 27, 109 [Russian]
  17. Рысс И.Г. Химия фтора и его неорганических соединений. - М., 1956. - pp. 15-48 [Russian]
  18. Свойства элементов. - Ч. 1, под редакцией Самсонова Г.В. - М.: Металлургия, 1976. - pp. 67 [Russian]
  19. Скурихин И.М., Нечаев А.П. Все о пище с точки зрения химика. - М.: Высшая школа, 1991. - pp. 220-273 [Russian]
  20. Фтор и его соединения. – Под ред. Саймонса Дж., Т. 1. - М.: ИИЛ, 1953. - pp. 267-270 [Russian]
  21. Химическая энциклопедия. - Т. 5. - М.: Советская энциклопедия, 1999. - pp. 197-199 [Russian]
  22. Химический энциклопедический словарь. - Под ред. Кнунянц И.Л. - М.: Советская энциклопедия, 1983. - pp. 637 [Russian]
  23. Химмотология ракетных и реактивных топлив. - Под ред. Браткова А.А. - М.: Химия, 1987. - pp. 73-76 [Russian]
  24. Энциклопедия для детей. - Т.17: Химия. - М.: Аванта+, 2004. - pp. 242 [Russian]

    What information do you need?




    © Collected Ruslan Anatolievich Kiper, burewestnik@mail.ru